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ABSTRACT  
 
A GPS/INS sensor suite was attached by a vest to a 
canine (K-9) in order to attain characteristic position and 
orientation data during typical K-9 behavioral motions 
such as walking, trotting, sitting, and turning.  For better 
accuracy, the sensors were combined using an Extended 
Kalman Filter (EKF), which has been done for other 
GPS/INS integrated  systems [1-3] and then examined to 
see if the position and orientation EKF outputs correctly 
portrayed the K-9 motions.  Special tuning of the EKF 
was required due to the unique motion characteristics 
inherent in canines.  However, the EKF was found to be 
effective in achieving relatively accurate position and 
orientation tracking results for the canine.  Results show 
that the low-cost GPS/INS system can provide 
information about the canine’s motion, including the 
canine’s current position and heading.   
 

INTRODUCTION  
 
The use of GPS and INS integration to accurately localize 
vehicles and robots for remote or autonomous control 
purposes is very prevalent today [2-6].  However, little 

work has been done on remote or autonomous control of 
live systems (bio-robots), such as canines.  GPS/INS 
integration has been effectively utilized in tracking the 
motion of pedestrians and horses [7-9].  Reports of the 
successful implantation or coming research involving the 
implantation of electrodes in the brains of animals such as 
sharks, rats, monkeys, spiny dogfish, mice, pigeons, and 
even cockroaches for controlling purposes are available to 
date [10-17].  The ability to autonomously control a dog 
could have an immediate impact in search and rescue 
missions, narcotic detection, or bomb detection, and 
ultimately, could save human lives since the handler can 
be invisible and/or out of harm’s way.  Also, dogs can 
traverse a variety of terrain more efficiently than humans, 
and possess a natural array of “sensors” used to detect and 
locate items of interest.  Therefore, many aspects that 
pose problems to Unmanned Ground Vehicles (UGVs) 
are inherently removed with the canine, as the dog can 
execute the low-level decision making necessary for 
rerouting its local path to avoid obstacles or unfavorable 
terrain.  Also, since these canines are trained to scour an 
entire area when they reach the general destination that a 
handler guides them to, a relatively small amount of error 
in estimating the dog’s position and orientation may be 
acceptable. 
 
Auburn University’s Canine & Detection Research 
Institute (CDRI) has trained canines to move to desired 
locations by responding to different tones, rather than by 
utilizing brain electrodes.  A command module produces 
tones to provide instruction.  A reinforcing tone (static) is 
given to the K-9 to communicate that it is traveling in the 
right direction.  When the tone is stopped, the K-9 turns in 
different directions until it is positioned accurately.  Then, 
the reinforcing tone is re-established, and the K-9 
continues going straight.  It has been established that a K-
9 can be remotely controlled in this fashion.  The CDRI is 
currently working on broadening the array of available 
commands to include gentle vibrations that will tell the 
dog to turn left or right.   
 
The long-term goal of this project is to be able to 
autonomously control a K-9, rather than just remotely 
controlling the K-9.  The current, remote-control set-up 



requires that the handler be able to see the dog’s position 
and heading.  So, in order to mimic having a handler, 
accurate position and orientation need to be determined.  
After optimal position and orientation tracking has been 
achieved, a control algorithm will be used to 
autonomously control the K-9.   
 
Figure 1 illustrates the “remote control” currently being 
used by the CDRI for the dogs. 
 

 
Figure 1:  Canine remote control currently being used by 
the CDRI. 
 
In order to map the location and orientation of the canine 
at a given point, a low-cost, limited sensor suite 
composed of a consumer grade uBlox GPS receiver and a 
six degree of freedom Sentera IMU containing three 
accelerometers and three gyroscopes was used.  In this 
paper, only the accelerometer measuring acceleration in 
the longitudinal direction and the gyroscope measuring 
yaw rate were used.  By combining the measurements 
from the GPS receiver, accelerometers, and gyroscopes 
using the Extended Kalman Filter (EKF), accurate 
estimates of the dog’s position, orientation, and velocity 
can be provided to the dog’s operator, or even a control 
system.  A harness was designed for the canine that would 
hold the sensor suite as well as the vibrators and intercom 
system for instructing the canine motion. 
 
Figure 2 illustrates the K-9, harness, and sensor suite 
utilized for the testing.  The vibrators and intercom used 
for remote control purposes are not attached to the 
harness for the purposes of these tests.  A new harness 
set-up is already being designed to make the sensor suite 
less bulky and heavy on the back of the canine.  This will 
help to eliminate problems occurring due to the sensor 
suite sliding relative to the canine motion or producing 
extra noise on the measurements due to excessive 
shaking. 
 

 
Figure 2:  Canine with vest and GPS/INS system attached. 
 

CANINE TESTING 
 
Although the sensor suite currently being utilized to track 
the motion of the K-9 is not unique, the canine motion 
provided new challenges to motion tracking.  For 
example, unlike what is typical when analyzing a vehicle, 
a canine bounces while trotting and also tends to slightly 
tilt back and forth while walking.  Also, unlike man-made 
machines that respond in relatively predictable ways, the 
canine exhibits behaviors that are independent of the 
inputs.  Therefore, many different possible canine motion 
situations must be accounted for in the design and tuning 
of the EKF algorithms.  To account for these different 
scenarios, a series of controlled tests were run to 
demonstrate and determine the unique motion of a canine 
and to estimate the factors that could corrupt the 
navigation system.   
 
Using a compass, estimated north and east axes were 
marked before applicable tests to provide qualitative 
measures of how effective the EKF was in tracking the 
canine position (see Figure 3).  Next, the dog was walked 
to illustrate typical canine motions.  Namely, the K-9 was 
instructed to: 

1) Walk north; turn east; u-turn and walk west; then 
walk south (“L” test). 

2) Walk east; turn and walk north, turn and walk 
west, then turn and walk south (box test). 

Using these tests, the EKF was tuned to reject some of the 
typical disturbances created by a dog's sporadic 
movements, but still maintain an acceptable level of 
navigational performance.  Videos were also made to 
assist in checking for error. 
 



 
Figure 3:  North and East axes. 
 

TRACKING ALGORITHM 
 
The Kalman Filter is an effective tool that can be used to 
integrate acquired measurements from a GPS sensor with 
acquired measurements from an Inertial Measurement 
Unit (IMU).  Although GPS measurements prove to be 
relatively accurate, the rate at which they are taken is 
much slower than the rate at which an IMU takes 
measurements.  Also, the GPS signal can be lost from 
time to time, but an IMU will be able to continue 
providing measurements.  So, integrating the 
measurements from the different sensors can help to 
achieve more accurate results.   
 
The EKF allows filtering of non-linear systems, such as 
those found in typical navigation filtering scenarios, and 
is described in detail elsewhere [1].  For this system, the 
longitudinal acceleration is measured by an 
accelerometer, and the yaw rate is measured by a 
gyroscope.  The velocity, course, north, and east positions 
are measured by the GPS receiver.  These are all 
integrated by the tracking algorithm.  The state estimate 
vector for this system is: 
 

 T
ga ENbbVx ]ˆˆˆˆˆˆ[ˆ ψ=   (1) 

 Where: V̂   =  Estimated velocity 
   ab̂   =  Estimated accelerometer bias 
   ψ̂   =  Estimated course 

   gb̂   =  Estimated gyroscope bias 

   N̂   =  Estimated north position 
   Ê   =  Estimated east position 
 
Figure 4 visually illustrates the notations used in 
determining northern and eastern velocities.  
 

 
Figure 4:  Visual illustration of northern and eastern 
velocity determination. 
 
The GPS receiver outputs course ( βψ + ).  However, the 
gyroscope outputs yaw rate where the integral of yaw rate 
is heading.  In order to integrate the yaw rate 
measurements with the GPS course measurements, the 
side slip, β, is assumed to be zero.  Therefore, the 
estimated course ( βψ + ) becomes estimated heading 
(ψ).  The K-9 can induce errors into the EKF by not 
walking exactly forward when it is facing forward (i.e., 
the K-9 motion contains some sideslip).  However, for the 
initial development of the tracking algorithm, this variable 
is neglected. 
 
The state equations used for GPS/INS integration are as 
follows: 
 

  a
m
x bAV −=&̂  (2) 

 Where: m
xA  = Measured longitudinal 

acceleration from the 
accelerometer 

 
 g

m
z bg −=ψ̂&  (3) 

Where: m
zg  =  Measured yaw rate from the 

gyroscope measuring motion 
about the z-axis 

 
The biases for this system are modeled as random walks, 
and the process noise is assumed to be zero mean white 
noise (i.e., ω ~ N(0, 2

ωσ ) ).  Therefore, the following 
equations representing the change in biases for the 
accelerometer and gyroscope, respectively, are: 
 

  aab ω+= 0&
2s

m  (4) 

  ggb ω+= 0&
s

rad  

 Where: ω  =  Process noise 
 
The estimated changes in northern and eastern directions 
are calculated with the following equations, according to 
Figure 4. 
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  ψ̂sinˆˆ VE =&    
 
Note that the northern and eastern velocities are non-
linear.  Therefore, the Jacobian (Φ) is used for the 
covariance prediction in the EKF to linearize the system 
about the operating point.  The Jacobian is found utilizing 
the following: 
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 Where: nf ...1  = State equations 
  nx ...1  = States 
 
This results in the Jacobian matrix for the present system, 
shown below: 
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There are two INS inputs to the integrated system—
namely, m

xA and m
zg .  Therefore, the input vector is the 

following: 
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The above relationships and matrices are transferred into 
state space form.  The general state space equation is the 
following: 
 
 ωωBBuxx ++Φ=&  (9) 
 Where: B = Input observation matrix 
  BBωB = Noise input observation matrix 
 
The general output or measurement equation is the 
following: 
 
 ν+= Cxy  (10) 
 Where: ν = Sensor noise 
  C = Output observation matrix 
 

The measured GPS velocity, VBGPSM B, is equal to the actual 
velocity (state number 1) plus GPS sensor noise and 
similarly for the other GPS measurements.  So, the output 
equation can be reduced to the following: 
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The GPS Sensor Noise Covariance Matrix (R) and the 
Process Noise Covariance Matrix (Q) constitute the 
primary EKF tuning parameters.   
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The Sensor Noise Covariance Matrix values are relatively 
standard and are acquired from the GPS sensor 
information. 
 

 05.0=GPSvelσ
s
m  (14) 
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The Process Noise Covariance Matrix values prove to be 
more variable” due to the unique motion characteristics of 
a K-9. 
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Note that the optimal values for noise on the 
accelerometer and the gyroscope fall in a range of 
numbers based upon the particular test that the dog was 
instructed to run, rather than a unique value.  It will be 
important to optimize the navigation algorithm to allow 
for unique values for a K-9 rather than for a particular 
path in the future.  The process noise values also affect 
the dead reckoning performance of the system.  So, 
further research must be conducted to optimize the 
performance of the navigation filter. 
 
The state estimation covariance matrix was initialized as 
follows: 
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The EKF is composed of a measurement update and a 
time update [1,18].  When GPS measurements are 
available, the following standard measurement update 
equations are applied. 
 
 1][ −−− += k

T
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 −+ −= kdkk PCLIP )(  (19) 
 Where: k   =  Current time index 
 d  =  System is discretized  
  L  =  Kalman gain vector 
 
The EKF time update is described by: 
 k

T
dkdk QPP +ΦΦ= +−

+1  (20) 

 txxx kkk ∆+= +
+−

+ 11 ˆˆ &  (21) 

 Where: x&  is calculated from non-linear 
Equations (2-5).   

 
As noted earlier, GPS outages can occur from time to 
time, particularly when objects come in between the GPS 
antenna and the satellites the receiver is tracking.  
Therefore, when the K-9 is instructed to maneuver into 
locations with more overhead obstacles, GPS could 
become unavailable.  This initiates a dead reckoning 
situation, where only the IMU measurements are used in 
the filter.  The accuracy in tracking the K-9 degrades over 
time since the tracking results are based solely on dead 
reckoning.  Dead reckoning is less accurate, but 
integrating the IMU without GPS measurements still 

provides positioning estimates, although at lower 
accuracy. 
 

EXPERIMENTAL RESULTS 
 
Figures 5 and 6 illustrate the challenge in attaining 
accurate tracking information when trying to utilize 
GPS/INS integration to accurately track K-9 motion.  The 
figures show very high frequency and magnitude 
oscillations due to the motions of the K-9 (i.e., 100 deg/s 
oscillations for the yaw rate and three m/sP

2
P for the 

acceleration).  Recall that one of the critical estimated 
states of interest for this study is the change in orientation 
of the K-9.  However, much of this high frequency motion 
is due to the unique motion characteristics of the K-9, 
rather than the actual orientation change of the K-9.  The 
motions of the dog captured by the yaw gyroscope, for 
instance, are at a relatively higher frequency than the 
actual change of in the dog’s orientation.  This illustrates 
the need for further optimizing of the filtering in future 
work. 
 

 
Figure 5:  Yaw rate measured from the IMU gyroscope. 
 

 
Figure 6:  Measured acceleration from the longitudinal 
accelerometer. 
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Figures 7, 8, and 10 illustrate the results acquired when 
the K-9 is instructed to travel north, turn and travel east, 
U-turn and travel west, and then turn and travel south.  
Figure 7 illustrates measured GPS velocity, EKF 
estimated velocity, and the velocity acquired from pure 
dead reckoning of the IMU without sensor biases taken 
into account.  Again, the EKF estimate tracks the dog 
very well.  The dead reckoning velocity profile drifts 
away from the GPS measurement and EKF estimate, as 
would be expected.   
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Figure 7:  Velocity profile for GPS measurements versus 
EKF estimate versus dead reckoning when the K-9 travels 
north, turns and travels east, U-turns and travels west, and 
then turns and travels south. 
 
The EKF position estimate (see Figure 8) adheres to the 
GPS measurements, then diverges when the dog velocity 
approaches zero meters per second at the U-turn around 
16 and 18 seconds, which caused the GPS course 
measurements to become inaccurate.  Then, when the K-9 
velocity increased, the positions merge again towards the 
end of the test.   
 
Additionally, as seen in Figure 10, the biases level out 
over time, and the velocity and heading track the GPS 
very well.  The heading drifts slightly when the K-9 
velocity approaches zero meters per second at the U-turn 
(see Figure 10).   
 
Figures 9 and 11 illustrate the results acquired when the 
dog is instructed to travel north, turn and travel east, turn 
and travel south, and then turn and travel west to the 
approximate starting position.  GPS is artificially removed 
around 15 seconds to demonstrate loss of GPS and 
simulate pure dead reckoning.  The EKF estimate at this 
point is based on the IMU and the last bias estimate 
before GPS cut out alone for about 15 seconds.  The EKF 
estimate velocity profile shows the commencement of a 
severe drift away from the actual GPS measurements 
towards the end of the test (see Figure 11).  The biases 
become constant after GPS cuts out.  Although the 

velocity drifts, the heading estimate continues to stay 
close to the actual GPS measurements.   
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Figure 8:  GPS measurement versus EKF estimated 
position results when the K-9 travels north, turns and 
travels east, U-turns and travels west, and then turns and 
travels south. 
 
The position plot (Figure 9) shows the measured GPS 
position and EKF estimated position of the K-9 during the 
test.  The EKF estimate drifts away from the GPS 
measurements towards the end of the test, as would be 
expected due to the simulation of GPS outage half-way 
through the process. 
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Figure 9:  GPS measurement versus EKF estimated 
position results when the K-9 travels north, turns and 
travels east, turns and travels south, and then turns and 
travels west.  GPS measurements are turned off in the 
EKF estimate at approximately 15 seconds. 
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Figure 10:  Velocity, accelerometer bias, heading, and gyroscope bias EKF estimate results when the K-9 travels north, turns 
and travels east, U-turns and travels west, and then turns and travels south. 
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Figure 11:  Velocity, accelerometer bias, heading, and gyroscope bias EKF estimate results when the K-9 travels north, turns 
and travels east, turns and travels south, and then turns and travels west.  GPS measurements are turned off in the EKF 
estimate at approximately 15 seconds. 



CONCLUSIONS 
 
This paper has shown that GPS/INS integration can be 
utilized effectively to achieve adequate position and 
orientation results with the Extended Kalman Filter, in 
spite of the unique motion characteristics of the K-9.  
However, future work must optimize the above navigation 
algorithm to more efficiently track the dog’s motion 
characteristics in light of Figures 5 and 6.  Also, in this 
paper the process noise parameters had to be tuned for 
each experiment or path.  It is desired that the process 
noise parameters be path independent.  So, without having 
to make adjustments to the values of the process noises, 
the tracking algorithm must be robust enough to handle 
erratic disturbances such as the following: 
 

1) The canine jumps;  
2) The canine bends over to sniff, as bomb and drug 

detection canines do;  
3) The canine runs, thus causing the sensor suite to 

slide on the back of the dog.   
 
Also, in actuality, the assumption that the process noise is 
zero mean and white is incorrect.  The noise may need to 
be modeled differently to achieve better results.  It is also 
possible that sideslip cannot be neglected.  Although a 
vehicle has little side slip in typical situations, a dog may 
tend to slide a bit while walking forward, which would 
imply that the GPS course measurements do not reduce to 
heading.  
 
On the hardware side, the sensor suite components will 
probably be separated and embedded into the dog’s 
harness in the near future rather than being placed in a 
bulky and heavy box on the dog’s back that tends to slide 
around on the K-9.  It is also possible that a simple, digital 
magnetic compass could be utilized in this application to 
help improve heading performance, as well as including 
measurements from some of the other IMU components. 
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