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Abstract— In this paper a phase coded continuous wave (CW) these factors corrupt the range measurements leads to bette
radar system is analyzed. The motivation for the research was modeling of the range errors. More accurate modeling of the
to accelerate tracking filter convergence. The main goal of the errors improves the performance of the tracking filters Ttie

paper is to express the variance of the range errors as a function - f th functi f SNR iti
of signal to noise ratio and position in the split-gate region. variance or the range errors as a function o » position

Furthermore, the effect of different signal processing algoritms ~ between the range gates, and channel mismatch is derived
on the variance of the range errors is investigated. The effects mathematically for two different discriminator functiona

of channel mismatch in the receiver and range gate spacing on simulation of a target passing through the range gates is

the variance of the range errors are also included. Analytical \,saq to validate the empirical formulas and examine a third
equations that relate the variance of the range errors to signal . . .
discriminator function.

to noise ratio (SNR) and position within the split gate region are ; A .
derived using a Taylor series expansion. The analytical equations ~ Split-gate tracking is well understood and prior work has
are consistent with a statistical analysis of a simulation of the investigated the effects of noise on range accuracy. Haweve

radar system in MATLAB. The results of the work are the the standard deviation of the range errors in previous werk i
analytical equations for the variance of the range error as a 5q5;med to be unrelated to the target’s position in the gat
function of SNR, range gate spacing, and channel mismatch for .
a split-gate tracker. region. For Pulse-Doppler systems, several radar textbook
provide equations for calculating the RMS value of the range
I. INTRODUCTION errors, [2], [3], [4]. None of these sources consider thgets

The radar system analyzed in this paper was developetf,?t?mon to be an influence on the range accuracy of the radar.

Phase IV Systems in Huntsville, AL. The radar system Wasos_t_radar tex_tbooks d(.) not analyze CW spll_t-gate rackers |
) : sufficient detail to provide equations for their accuracyv C
designed to be mounted on a ground vehicle and track targe

. ; A9 8 ht-gate tracking is analyzed in great detail in the stof
approaching the vehicle. The system measures the dista Sg(GIobaI Posgi]tioning Syystem) qrhe discriminator f Iy
from the radar face to the target by using the autocorreiatiq !

) . analyzed in this paper fall into a category of discriminator
properties of maximal length codes. These measuremen . ! .

. . : ; referred to in GPS literature as the normalized early-miates
are input to a Kalman filter which produces refined range

estimates. The purpose of this research is to develop a ra ower discriminators. Equations have been published which

e . : . o
. I . . 2&cribe the range variance of this type of code discriraimat
;/r::;iinncge expression in the form of equation (1) for splltegatm relation to SNR, [5]. The equations do not consider the

SR offset between the actual and predicted phase of the reteive
Ttarget = k(Am, Ax) (1) code. This offset in phase between the received and locally
VSNR generated GPS codes is equivalent to a target moving through

In equation (1),0R is the spacing of the range gates irthe split-gate region.
a split-gate track,SNR is the Signal to Noise Ratio, and
k(Am, Ax) is a scaling factor which is a function of position, II. SysTEM DESCRIPTION
Az, and channel mismatchym, in the receiver. The paper The signal emitted by the radar is modeled as (2). In42),
examines the noise induced range errors inherent in a spfthe amplitude of the signal and. is its radian frequency.
gate range track. One goal of the research is to determifiét) is a maximal length sequence consistingiaf's.
whether the variance of the range measurement errors is a .
function of position within the split-gate region. A second Se(t) = AG(#) cos(wet) 2)
goal of the paper is to develop a relationship between theThe signal is broadcast and then reflected back by the
variance of the range measurement errors and the signaincoming target. Figure 1 shows a block diagram of the radar.
noise ratio of the returned signal and channel mismatch. Thke signal is passed through the receiver front-end and is
third goal of the report is to compare the performance ofiodeled as (3). In (3)A, is the amplitude of the returned
three different discriminator functions. Knowledge of howsignal after passing through the front-end, is the Doppler



shift in frequency caused by the target’s velocity, and the (9) expresses the output of the bandpass filter in the frexyuen
time delay between when the signal is emitted and when itdemain. HereI" is the period of the code.
received.

1 T
S:(t) = A,G(t — 1) cos(we +wa)t—7)) @) Vel =AT /0 Gt =Gt —ma) dt |0 —wrr —wa)

)
The integral in (9) is the definition of autocorrelation.
_ Equation (10) expresses the output of the bandpass filter in
o Mﬁ Exciter the frequency domain as the autocorrelation of the maximal
/ length code offset from the IF frequency by the Doppler shift
wgq. The outputs of the other two mixers are similarly filtered
F—— [=] and can be expressed as equations (11) and (12).
\ .: @7 Sa(t) Va(w) = ATR(TG — 7')5((4) — WJF — wd) (10)
S >_%4,® St Vp(w) = A R(mp — 7)0(w — wip — wq) (11)
’ . st Vew) = A, R(1e — 7)0(w — wip — wq) (12)
Following the bandpass filter, the signal is sampled and
Fig. 1. Block Diagram of Radar System a Discrete Fourier Transform (DFT) is performed on the
sampled signal. In the DFT, the centerline will appear offse
from the IF frequency by an amount equal to the Doppler
81ift on the received signal. The amplitude of the centerlin

IS proportional to the correlation between the received and
gally generated signals. The amplitudes of the centslin

After passing through the receiver, the sigrl is split
three ways and mixed with three different LO signals. Each L
signal is a delayed version of the transmitted signal. Egnat

4) through (6) represent the three delayed versions of t
(4) ugh (6) repres yed versions rom each of the three channels are referred toVasV,,

broadcast signal. In equations (4) through {§),7,, andr. are . :
fixed time delays. The termy;r represents the InterrﬁediateaanI Ve. The three amplitudes are processed to determine the

Frequency (IF) of the radar system. targets’s distance.

So(t) = G(t — 74) cos((we — wrr)t) (4)
Sp(t) = G(t — 1) cos((we — wrrp)t) (5) 1t
S.(t) = G(t — 7.) cos((we — wrp)t) (6) 08

In the ideal case, the signal produced by mixing signals (4

and (3) is modeled as (7). Trigonometric identities are ueed 1> 0.6
rearrange (7) into (8), [6]. E:’ o4
My(t) = AG(t—T7)G(t—Ta) '
cos((we — wrr)t) 7 0.2
cos((we + wg)(t — 7)) 0.
Mo(t) = AGEH— )Gt —7) -2 -1 0 1 2
[cos((wrr +wa)t) (8) T (Bits)
+ cos((2we — wrp + wa)t
—(we + wq)(1))] Fig. 2. Autocorrelation Function of Maximal Length Code

The signalM, (t) is then bandpass filtered abautr. This Figure 2 shows the autocorrelation function of a maximal
filtering removes the high frequency bracketed term in (8fngth code. The autocorrelation function has a peak-at0
The filter bandwidth is designed to pass the expected rarmygd decreases linearly te% at 7 = +1, where L is the
of Doppler frequencies. The signal&(t — 7) and G(t — 7,) length of the code. Another attractive attribute of the meadi
both have a power spectral density consisting of discrdength code is that the range side lobes remain constant for
line components, [7]. The signal produced by multiplyingll shifts, except when the codes align. This is significant
them consequently has a discrete spectrum. The bandpassause codes that do not have constant range side lobes
filter removes all the spectral lines except the centerliftee may cause false alarms in the detection process. The delay
amplitude of the centerline is proportional to the time ager 7, is chosen such that at distanég.;, the autocorrelation
of the product of the two maximal length sequences. Equatiumction is at a maximum. As the target approaches this



distance from the radar, the amplitudelgf in (10) increases Each delayed signal now has a gain associated with it to
linearly with distance. The increase in amplitude is refdrr represent the channel mismatch.
to as correlating up. After passing, .., V, decreases linearly

with the approaching distance of the target. This decremase i Sa(t) = AuG(t — 74) cos((we — wrp)t) (15)
amplitude is referred to as correlating down. Similarlyptw
distances,R,,, and R,,., exist whereV, and V, are at a Sp(t) = ApG(t — 1) cos((we — wir)t) (16)

maximum, respectively. The regions whevg, V,, and V,
overlap are referred to as the split-gate regions.

Se(t) = A.G(t — 7¢) cos((we — wrp)t) a7
1 bit
' ‘ The signal leaving the channel mixer is modeled as (18).
’\[\ Vb /V\E The signal leaving each mixer is then bandpass filtered about
| 7 T - - wrr and the high frequency terms are eliminated.
B L e 7 N
g P s M,(t) = AAG(t—T7)G(t — 7o) cos((wrr +wa)t)
< Rrgaf"f N Rrgg/' Rrgc
= A S +Aqx(t)G(t — 74) cos(wrrt) (18)
+A.y(t)G(t — 7,) sin(wypt) +
Distance higher frequency terms
Fig. 3. Overlapping Range Gates The signal leaving the bandpass filter is now modeled in the

frequency domain as (19). The asterisk has been addeg to

Figure 3 shows the overlapping range gatBs,, is the to denote that the measurement has been corrupted by noise,
shortest distance from the radar face ddg. is the furthest. not to signify conjugation. The Doppler frequency is assdme
When the target is betweer,,, and R,,.the radar is to be zeroin (19). For the rest of the paper, the Doppler shift
configured for two different split-gate tracking regionshel Wwill be assumed to be zero. This assumption does not effect
two highest amplitudes are used to determine the targdt validity our results.
distance.

When the target is betweeR,.,. and R,.., equation (13) is Viw) = AuAR(1a —7) + Elz(t)G(t — 74)]
used to compute the target’s distance. In equation @R)is +iE[y(t)G(t — 72)]]6(w — wrF) (19)
the distance between the peaks of the different autoctioela
functions. The signalV,* can be rewritten as the true amplitudie
L+1V.—V, R SR plus the contribution of the error ternds , andJ, , caused
L-1V.+V, 2 + Rrgp + 5 (13) by the correlation of the noise and the delayed code, (2@. Th

i voltages produced by thie and ¢ channel correlators can be
If the target is betweerR,,, and R,4, V. and V;, are similarly written, (21), (22).

replaced withV;, and V,, respectively. For the rest of this
paper only the scenario where the target is betwgpn and VA (w) = Aa[Va + 0p.0 + 6y.0] (20)
R, 4 will be considered, since the results would be identical ’ ’

for a target betweem, ,, and R,4,.

Rtarget =

Vi (w) = Ap[Vi + dup + 50y 1) (21)
I1l. ERRORMODELING

Two sources of error are considered to corrupt the range Vi(w) = AclVe + 0a,c + 0y ] (22)
measurement;, ;. The first is narrow band noise that is
added by the receiver front-end. The second source is channe V. NOISEEFFECTSON RANGING PRECISION

mismatch in the different receiver correlator outputs. The The values ofV*, V;*, andV* are provided by a DFT op-

signal leaving the receiver is now modeled as equation (t4). .
. ration on sampled data from each of the correlator channels
(14),x(t) andy(t) are the in-phase and quadrature compone . :
. : guation (23) is the general method used to transform the
of the noise added by the front-end [8], respectively. The N, o
valuesV;, V*, andV into range measurements. The values

noise components(t) andy(t) are both bandlimited GaUSSIanprovided by the DFT are complex, but the target's range must

processes. be a real number. Three discriminators are considered, each
S.(t) = A.G(t—7)cos((we +wq)(t—7)) + transforms the complex data from the DFT into a real range
2(t) cos(wet) + y(t) cos(wet) (14) measurement differently.
As in equation (7), the signal is mixed with three delayequTget = L+1Ve—VyoR + Rogy + oR (23)

versions of the emitted signal in equations (15) through.(17 L—-1Vr+V; 2 2



. . .. T T
A. First Discriminator / (t)G(t — Tc)dt/ 2(t)G(t — 7o)dt =
The first method uses only the real component'd/pfand 0
V¥ in equation (23). The result is equation (24).

T T
t t t1 — Te to — 7. )dt1dt 31
L LAV 8] AalVh 8] o /0 /0 w(0)a(t2)G(tr — 7)Clts — 7o)dtrdts  (31)

R arge = - . . . .
target L—1AVeA+dpe] + Ap[Vi + 60p] 2 The expectation operator and integration are linear func-
R oR (24) tions. The expectation operator can therefore be movedansi
gy 2 the double integral. The nois&(t) and maximal length code

To derive the variance of;.-4: in (24), the division in are uncorrelated so their expected values can be compuyted se
(24) is approximated with a first order Taylor Series expanderately, (32). The expected value of the product of a sequenc
around the error terms, (25). and a copy of itself at a different time is the autocorrelatio
AV + 8] — Ap[Vi + 025 of the sequence. Equ_ation (33) shows the expec_tations )r) (32
AlVe 1 0] + ApVe +5x'b] = f(0z,c;02) (25) replaced with the noise and code autocorrelation functions

’ ' The noisex(t) is assumed to sufficiently high in bandwidth
where that its autocorrelation function can be modeled as a delta

Of (0u,c, 0u ion.
F(0z.cr00p) = £(0,0) + 5%6M function ] i
< lsam0sm0 2= [ Bla(t)a ()]
af(5:E,C75m,b) T t1=0 Jt2=0
+ 5%})67
@b 82,6=0,65,c=0 E[G(tl —7.)G(t2 — TC)]dtldtQ] (32)
Carrying out the differentiation in (25) results in (26).
Ach - Abe
x,cy Yo N 2 2 — —
f((s, 0 7b) Ac‘/—c‘f'AbV;) ( 6) (5 T2 /tl 0\/@_(} 1 fg R(tl tg)dt1dt2 (33)
2AcAbVE7 2AcAb‘/vc

- The delta function inside (33) is zero wheneverand ¢,
2~ “zb 2

(AVe + ApVh) (AcVe + ApVh) are not equal. When, andt, are equalR(0) is one and the
Equation (27) shows the division in (24) replaced with thg\ner integral is equal to2, (34). The expected value of .

+5I,c

first order Taylor series. is therefore displayed in (35). The expected values,of is
L+ 1{A V. — AV 24, AV, similarly derived and shown in (36).
Rt(mget = L + 0z cc—
AVe + AV AV, + AVy)? 1T
SO o) Bt) =75 | otn (34)
2A A) 6R 6 ) t1=0
O b Rygy + - (27) 2
(AcVe + ApV3)? B2, =2 (35)
The variance of the error in the range measurements is ’ 7;
defined in (28). In (28)R:4rqe: iS the mean value of equation E[52 )] = Oy (36)
* T

(27). Substituting equation (27) into (28) produces (29eT
expected values oeﬁT . and 62 1, and the expected value of The expected value of the quantity .d, , can be derived in
dz,¢0,,» MuUSt be computed to use equation (29). a manner similar to that shown fdf[(S?, ], (37). In Equation
(37), the inside integral evaluates R{7. —7,) whent; andt,

2 _ _ 2
Ttarger = El(Riarger ~ Riarger)”] (28)  are equal and zero otherwise. The expected valu&, of., ;
, (L+ 1)2 (5R>2E 2 JAZ A2V 29) is therefore shown in (38).
Otarget — \ 77 5 T.Cl A N/ L A 1/ \4
’ L-1 2 (ACVVC * Ab‘/b)4 [61 c(sz b / / tl - t2)
4A2A2V2 8AZA2V.V, nmoJuzo”
62, ——ctb’c 5 Spp——0Ot b2 R(t1 — ty + 7o — 1p)dt1dt 37
T Ay At e A 1 AV 1R )dtrdte (37)
The definition J, . is used to derive its expected value E[0y.0004) = o R(1e — ) (38)
squared, (30). The product of the two integrals in (30) can T T
be rearranged into a double integral, (31). The integrals inEquation (39) shows the expectations in equation (29)
(31) are carried out with respect tp andis. replaced with their actual values.
1T L+1\?/6R\?| 4A242V2
E[62 1=E|| = HG(t — 1.)dt 2 === = —ethh 39
[517(‘] (T/O l'( )G( T )d ) Utarget <L _ 1) ( 2 > (ACVC ¥ Ab‘/b)4 ( )

17 4A2A2V? 8R(1. — 1) AZA2V,V},
_ t t— - dt 30 c‘*b Ve _ c cip Ve
(T/o et =) )] (0 Vot AU (AVe+ AgWy)?

)




The variance of the range errors can be related to sigr&dries approximation of the second discriminator is icahti
to noise ratio by remembering the definition of the voltagés that of the first discriminator.

Vo, Vi, andV,,(40). Each term contains the amplitude of the A V. — AV 24, A V4
receiv_ed signal after pas;ing through the_ recei_ver’s feomnt. f(5z,ca5yﬁcv5z,b75y,b) = AV, + AV, + T AV, + AV))2
SNR is defined in equation (41) for a sinusoid as the ratio 24, AV,

of the signal power to the noise powe?,. For narrowband - 5+ (47)

B R b A
noise, the noise power is equal to the variancec@f and (AcVe+ ApV3)
to the variance ofy(t), [8]. The SNR level at the input to The variance of the range errors for the second discriminato
the mixer can therefore be expressed as the ratio of thelsigen therefore be expressed with the same equation derived fo
power, %A2, to the noise poweiz2 or 03_ the first discriminator. Theoretically, the discriminatahould
) have the same performance.

Vo=AR(1, —7) = AR,

C. Third Discriminator

Vo = A R(mpy — 7) = Ar Ry (40)
_ _ Equation (48) shows the third discriminator function. It
V.=A.R(t.—7) = AR
¢ (7e =) ¢ takes the absolute values f* and V* and then performs
1 ro the math operations of the discriminator. The absoluteevalu
SNR — 34 operation does not lend itself to mathematical maniputeitio
P, this case. The third discriminators performance is evatliat
P, =0} =0, (41) empirically by simulation.
347 347 L+ 1|V - |Vy|6R SR
U% 0_5 Rtarget L_1|‘/C*|+‘VL*‘ 9 +Rrgb+ 9 ( )
Replacing the term¥), and V. in (39) with their definitions V. SIMULATION RESULTS AND VALIDATION

in (40) and rearranging yields equation (42). The definition |, order to both validate the analytical derivations of the
of SNR can now be used to express the variance of gyt and second discriminators and study the absolute value
range errors as a function of SNR, channel mismatch, agdcriminator, a simulation of the radar system was peréatm
position within the split-gate region, (43). Equation (48N i, \ATLAB. Nine equally spaced points where chosen be-
be arranged into the form of equation (44). tweenR,,. and R, as shown in Figure 4. At each discrete
point,the variance of the range error was computed by Monte
) L11\2 /6R\?2 1A2A2R? Qarlo simglation. Val_ues offtmget were first calculated _for
Otarget = (L—l) (2> m (42) different signal to noise ratios. Then, a Iea;t-squaresecﬂt .
of the data was performed. The data was fitted to the function

4A%2 A2 R? 8R(1. — 1) A2AZR.Ry | 02 in equation (49). The value df which gave the least-mean-
(AcR.+ RoRy)t  (A.R. + AyRp)* A2T squared error between the curve fit and the simulation eesult
was determined.
B. Second Discriminator SR
The second discriminator function is shown in (45). Here, Ttarget =k SNR (49)

all the operations inside the brackets are performed anmt the
only the real component of the division is considered. The
same Taylor series expansion approach is used to analyze t

discriminator function. The only difference is that all farror Vi Ve
terms are included, (46).
L+1 VI=Vyi | R oR
arget = = . T . 45
Riarget L—IR {‘/(/*_F‘/b*} 2+Rgb+2 (45)

AclVe + buc +30y.c] — Ap[Vo + 0o b + 56y 0]
Ac[‘/:: + (Sz,c + ]5yc] + Ab[% + 51,1} + jéy,b}
= f(éw,m 6y,c7 6w,b7 5y,b) (46)

Equation (47) shows the first three terms of the Taylor series
expansion. The partial with respectdg. results in an imag-
inary number. Since only the real component is considered, Fig. 4. Discrete Positions Within Split-Gate Region
the contribution ob, . to the series can be ignored. Likewise,
the partial with respect t6,;, can also be ignored. With the Figure 5 shows the results of the simulation for the first
terms contributed by, ;, andd, . gone, the first order Taylor discriminator for the discrete position labeled number five




discriminator with no channel mismatch.

o _ (LAY |1 4R L1 AMARRE  R(re—m) 242AfR.R, | (OR)’ 43)
target — \ 17 T (AcRc + AbRb)4 T (ACRC + RbRb)4 T (ACRC + AbRb)4 2SNR
0R
Otarget — R —F—rx 44
raract SNR e
where

A24 LI po | o
k= \/QT(ACRC+RbRb)4 (L—l) [Rb-‘ch—QR(TC—Tb)RbRC]

in figure 4 and no channel mismatch. The valueogf; g Figure 7 shows the predicted value &f and values
determined from the Monte Carlo simulation matches closetietermined from the least-squares fit of two different Monte
with the value derived earlier. The curve determined from tiCarlo simulations. The difference in the simulations is the
least-squares fit is also shown and accurately models thpe shimitial seed in MATLAB’s random number generator. The
of the data. Figure 6 shows the results of the same simulatipredicted and empirical values @f slightly diverge on the
for the discrete position at the edge of the split-gate megideft side in the top graph. The opposite behavior is seen in
labeled number nine in figure 4. Again, the simulation resulthe bottom graph. This behavior is attributed to the fact tha
and analytical values match closely. the noise MATLAB generates is not truly random but based

on the CPU state. Figure 8 shows how the valug ofiries

when the channels in the receiver are not match. For figure 8,
0.02- - — —
& Predicteds, . A, =.8andA. = 1.
A Monte carloolargel
0.01ér — Least Squares Fit of Monte Carlo Simulation =
& L ] ] n
b 0.0 L] ] L]
2 ~
<= 0.0 0.0 - " —
3] l Predicted Value from First Discriminator
g o j . | ¢ Determined From Monte Carlo Simulation
© .3 4 s . 6. 7 8 9
0.005 Discrete Positions Within Split-Gate Region
o L]
: : : "w‘;'.liijtthf:_ 0.0 u L] ] w [ ] | he
%O 25 30 35 40 45 50 55 7 60
SNR (dB) x
0.0
M Predicted Value from First Discriminator
g . . | ¢ Determined From Monte Carlo Simulation
. . . . . - 1 2. 3 4 s, . 6. 7 8 9
Fig. 5.  Simulation results at the middle of the split-gate @agwith no Discrete Positions Within Split-Gate Region
channel mismatch for the first discriminator.
Fig. 7. Predicted and Monte Carlo Values foffor the first discriminator
with no channel mismatch.
0.02 : . . .
I - Predicteds,_, Figure 9 shows the results of the Monte Carlo simulation
0.0 | [ Monte carlad g, for the second discriminator (45). The second discriminato
) — Least Squares Fit of Monte Carlo Simulation - . P
- produces the same values@f,,,: as the first discriminator,
S oo1 as predicted.

[J] . . .
£ Figure 10 shows the results of the Monte Carlo simulation
© 00 for the third discriminator (48) with no channel mismatch.

o Figure 11 shows its performance with, = .8 and A. = 1.
0.00 Its performance is equivalent to the performance of the first
two discriminators.
% VI. CONCLUSION
In this paper the authors present three new contributions.
First, we show that the variance of the range errors for a
Fig. 6.

Simulation results at the edge of the split-gate medar the first phase ched CW radar is a TunCtion Of_ position in the split-
gate region. Second, analytical equations are derived that



0.08
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| M Predicted Value from First Discriminator
4 Determined From Monte Carlo Simulation

Fig. 8. Predicted and Monte Carlo values foffor the first discriminator
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with channel mismatch4, = .8 and A, = 1.
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Fig. 9. Predicted and Monte Carlo valueskofor the second discriminator

2. 3 4 S, 6. 7 8 9
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with no channel mismatch.
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M Predicted Value from First Discriminator
4 Determined From Monte Carlo Simulation

Fig. 10. Monte Carlo values df for the third discriminator with the predicted
values of k for the first discriminator. There is no channel misima

2. 3 4 s . 6. 7 8 9
Discrete Positions Within Split-Gate Region

0of | M Predicted Value from First Discriminator
4 Determined From Monte Carlo Simulation

0.025

| ‘ ] , 9
0.02 [ ] (] ] L

= 0.015
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“ 2 3 a4 & 6 1 8 9
Discrete Positions Within Split-Gate Region

Fig. 11. Monte Carlo values df for the third discriminator with the predicted
values of k for the first discriminator. The channel mismatct2jsA, = .8
andA. = 1.

accurately relate the variance of the range errors to SNR and
channel mismatch. The third contribution is a comparison of
three different discriminator functions. All three disaihators

are shown to produce similar results.These contributiors a
significant because they allow the range errors encountered
in split-gate tracking to be better modeled. Correct madgli

of the range errors is important because it accelerates the
convergence of the track filter.

Future work in the area would include comparing the results
in the paper to actual data. By using real data, the results
shown in this paper could be validated. Using real data would
allow the performance of the track filter to be investigated.
How fast the track filter converges when using our results can
be compared to how fast it converges when it assumes the
variance of the range error is constant through the spi#-ga
region.
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