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Abstract— In this paper a phase coded continuous wave (CW)
radar system is analyzed. The motivation for the research was
to accelerate tracking filter convergence. The main goal of the
paper is to express the variance of the range errors as a function
of signal to noise ratio and position in the split-gate region.
Furthermore, the effect of different signal processing algorithms
on the variance of the range errors is investigated. The effects
of channel mismatch in the receiver and range gate spacing on
the variance of the range errors are also included. Analytical
equations that relate the variance of the range errors to signal
to noise ratio (SNR) and position within the split gate region are
derived using a Taylor series expansion. The analytical equations
are consistent with a statistical analysis of a simulation of the
radar system in MATLAB. The results of the work are the
analytical equations for the variance of the range error as a
function of SNR, range gate spacing, and channel mismatch for
a split-gate tracker.

I. I NTRODUCTION

The radar system analyzed in this paper was developed at
Phase IV Systems in Huntsville, AL. The radar system was
designed to be mounted on a ground vehicle and track targets
approaching the vehicle. The system measures the distance
from the radar face to the target by using the autocorrelation
properties of maximal length codes. These measurements
are input to a Kalman filter which produces refined range
estimates. The purpose of this research is to develop a range
variance expression in the form of equation (1) for split gate
tracking.

σtarget = k(∆m,∆x)
δR√
SNR

(1)

In equation (1),δR is the spacing of the range gates in
a split-gate track,SNR is the Signal to Noise Ratio, and
k(∆m,∆x) is a scaling factor which is a function of position,
∆x, and channel mismatch,∆m, in the receiver. The paper
examines the noise induced range errors inherent in a split-
gate range track. One goal of the research is to determine
whether the variance of the range measurement errors is a
function of position within the split-gate region. A second
goal of the paper is to develop a relationship between the
variance of the range measurement errors and the signal to
noise ratio of the returned signal and channel mismatch. The
third goal of the report is to compare the performance of
three different discriminator functions. Knowledge of how

these factors corrupt the range measurements leads to better
modeling of the range errors. More accurate modeling of the
errors improves the performance of the tracking filters [1].The
variance of the range errors as a function of SNR, position
between the range gates, and channel mismatch is derived
mathematically for two different discriminator functions. A
simulation of a target passing through the range gates is
used to validate the empirical formulas and examine a third
discriminator function.

Split-gate tracking is well understood and prior work has
investigated the effects of noise on range accuracy. However,
the standard deviation of the range errors in previous work is
assumed to be unrelated to the target’s position in the split-gate
region. For Pulse-Doppler systems, several radar textbooks
provide equations for calculating the RMS value of the range
errors, [2], [3], [4]. None of these sources consider the target’s
position to be an influence on the range accuracy of the radar.
Most radar textbooks do not analyze CW split-gate trackers in
sufficient detail to provide equations for their accuracy. CW
split-gate tracking is analyzed in great detail in the studyof
GPS (Global Positioning System). The discriminator functions
analyzed in this paper fall into a category of discriminators
referred to in GPS literature as the normalized early-minus-late
power discriminators. Equations have been published which
describe the range variance of this type of code discriminator
in relation to SNR, [5]. The equations do not consider the
offset between the actual and predicted phase of the received
code. This offset in phase between the received and locally
generated GPS codes is equivalent to a target moving through
the split-gate region.

II. SYSTEM DESCRIPTION

The signal emitted by the radar is modeled as (2). In (2),Ae

is the amplitude of the signal andωc is its radian frequency.
G(t) is a maximal length sequence consisting of±1′s.

Se(t) = AeG(t) cos(ωct) (2)

The signal is broadcast and then reflected back by the
incoming target. Figure 1 shows a block diagram of the radar.
The signal is passed through the receiver front-end and is
modeled as (3). In (3),Ar is the amplitude of the returned
signal after passing through the front-end,ωd is the Doppler



shift in frequency caused by the target’s velocity, andτ is the
time delay between when the signal is emitted and when it is
received.

Sr(t) = ArG(t − τ) cos((ωc + ωd)(t − τ)) (3)

Fig. 1. Block Diagram of Radar System

After passing through the receiver, the signalSr is split
three ways and mixed with three different LO signals. Each LO
signal is a delayed version of the transmitted signal. Equations
(4) through (6) represent the three delayed versions of the
broadcast signal. In equations (4) through (6),τa, τb, andτc are
fixed time delays. The termωIF represents the Intermediate
Frequency (IF) of the radar system.

Sa(t) = G(t − τa) cos((ωc − ωIF )t) (4)

Sb(t) = G(t − τb) cos((ωc − ωIF )t) (5)

Sc(t) = G(t − τc) cos((ωc − ωIF )t) (6)

In the ideal case, the signal produced by mixing signals (4)
and (3) is modeled as (7). Trigonometric identities are usedto
rearrange (7) into (8), [6].

Ma(t) = ArG(t − τ)G(t − τa)

cos((ωc − ωIF )t) (7)

cos((ωc + ωd)(t − τ))

Ma(t) = ArG(t − τ)G(t − τa)

[cos((ωIF + ωd)t) (8)

+cos((2ωc − ωIF + ωd)t

−(ωc + ωd)(τ))]

The signalMa(t) is then bandpass filtered aboutωIF . This
filtering removes the high frequency bracketed term in (8).
The filter bandwidth is designed to pass the expected range
of Doppler frequencies. The signalsG(t − τ) andG(t − τa)
both have a power spectral density consisting of discrete
line components, [7]. The signal produced by multiplying
them consequently has a discrete spectrum. The bandpass
filter removes all the spectral lines except the centerline.The
amplitude of the centerline is proportional to the time average
of the product of the two maximal length sequences. Equation

(9) expresses the output of the bandpass filter in the frequency
domain. Here,T is the period of the code.

Va(ω) = Ar

1

T

[

∫ T

0

G(t− τ)G(t− τa) dt

]

δ(ω − ωIF − ωd)

(9)
The integral in (9) is the definition of autocorrelation.

Equation (10) expresses the output of the bandpass filter in
the frequency domain as the autocorrelation of the maximal
length code offset from the IF frequency by the Doppler shift
ωd. The outputs of the other two mixers are similarly filtered
and can be expressed as equations (11) and (12).

Va(ω) = ArR(τa − τ)δ(ω − ωIF − ωd) (10)

Vb(ω) = ArR(τb − τ)δ(ω − ωIF − ωd) (11)

Vc(ω) = ArR(τc − τ)δ(ω − ωIF − ωd) (12)

Following the bandpass filter, the signal is sampled and
a Discrete Fourier Transform (DFT) is performed on the
sampled signal. In the DFT, the centerline will appear offset
from the IF frequency by an amount equal to the Doppler
shift on the received signal. The amplitude of the centerline
is proportional to the correlation between the received and
locally generated signals. The amplitudes of the centerlines
from each of the three channels are referred to asVa, Vb,
and Vc. The three amplitudes are processed to determine the
targets’s distance.
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Fig. 2. Autocorrelation Function of Maximal Length Code

Figure 2 shows the autocorrelation function of a maximal
length code. The autocorrelation function has a peak atτ = 0
and decreases linearly to− 1

L
at τ = ±1, where L is the

length of the code. Another attractive attribute of the maximal
length code is that the range side lobes remain constant for
all shifts, except when the codes align. This is significant
because codes that do not have constant range side lobes
may cause false alarms in the detection process. The delay
τa is chosen such that at distanceRrga the autocorrelation
function is at a maximum. As the target approaches this



distance from the radar, the amplitude ofVa in (10) increases
linearly with distance. The increase in amplitude is referred
to as correlating up. After passingRrga, Va decreases linearly
with the approaching distance of the target. This decrease in
amplitude is referred to as correlating down. Similarly, two
distances,Rrgb and Rrgc, exist whereVb and Vc are at a
maximum, respectively. The regions whereVa, Vb, and Vc

overlap are referred to as the split-gate regions.

Fig. 3. Overlapping Range Gates

Figure 3 shows the overlapping range gates.Rrga is the
shortest distance from the radar face andRrgc is the furthest.
When the target is betweenRrga and Rrgc,the radar is
configured for two different split-gate tracking regions. The
two highest amplitudes are used to determine the target’s
distance.

When the target is betweenRrgc andRrgb, equation (13) is
used to compute the target’s distance. In equation (13),δR is
the distance between the peaks of the different autocorrelation
functions.

Rtarget =
L + 1

L − 1

Vc − Vb

Vc + Vb

δR

2
+ Rrgb +

δR

2
(13)

If the target is betweenRrga and Rrgb, Vc and Vb are
replaced withVb and Va, respectively. For the rest of this
paper only the scenario where the target is betweenRrgc and
Rrgb will be considered, since the results would be identical
for a target betweenRrgb andRrga.

III. E RRORMODELING

Two sources of error are considered to corrupt the range
measurementRtarget. The first is narrow band noise that is
added by the receiver front-end. The second source is channel
mismatch in the different receiver correlator outputs. The
signal leaving the receiver is now modeled as equation (14).In
(14),x(t) andy(t) are the in-phase and quadrature components
of the noise added by the front-end [8], respectively. The
noise componentsx(t) andy(t) are both bandlimited Gaussian
processes.

Sr(t) = ArG(t − τ) cos((ωc + ωd)(t − τ)) +

x(t) cos(ωct) + y(t) cos(ωct) (14)

As in equation (7), the signal is mixed with three delayed
versions of the emitted signal in equations (15) through (17).

Each delayed signal now has a gain associated with it to
represent the channel mismatch.

Sa(t) = AaG(t − τa) cos((ωc − ωIF )t) (15)

Sb(t) = AbG(t − τb) cos((ωc − ωIF )t) (16)

Sc(t) = AcG(t − τc) cos((ωc − ωIF )t) (17)

The signal leaving thea channel mixer is modeled as (18).
The signal leaving each mixer is then bandpass filtered about
ωIF and the high frequency terms are eliminated.

Ma(t) = ArAaG(t − τ)G(t − τa) cos((ωIF + ωd)t)

+Aax(t)G(t − τa) cos(ωIF t) (18)

+Aay(t)G(t − τa) sin(ωIF t) +

higher frequency terms

The signal leaving the bandpass filter is now modeled in the
frequency domain as (19). The asterisk has been added toV ∗

a

to denote that the measurement has been corrupted by noise,
not to signify conjugation. The Doppler frequency is assumed
to be zero in (19). For the rest of the paper, the Doppler shift
will be assumed to be zero. This assumption does not effect
the validity our results.

V ∗

a (ω) = Aa[ArR(τa − τ) + E[x(t)G(t − τa)]

+jE[y(t)G(t − τa)]]δ(ω − ωIF ) (19)

The signalV ∗

a can be rewritten as the true amplitudeVa

plus the contribution of the error termsδx,a and δy,a caused
by the correlation of the noise and the delayed code, (20). The
voltages produced by theb and c channel correlators can be
similarly written, (21), (22).

V ∗

a (ω) = Aa[Va + δx,a + jδy,a] (20)

V ∗

b (ω) = Ab[Vb + δx,b + jδy,b] (21)

V ∗

c (ω) = Ac[Vc + δx,c + jδy,c] (22)

IV. N OISE EFFECTSON RANGING PRECISION

The values ofV ∗

a , V ∗

b , andV ∗

c are provided by a DFT op-
eration on sampled data from each of the correlator channels.
Equation (23) is the general method used to transform the
valuesV ∗

a , V ∗

b , andV ∗

c into range measurements. The values
provided by the DFT are complex, but the target’s range must
be a real number. Three discriminators are considered, each
transforms the complex data from the DFT into a real range
measurement differently.

Rtarget =
L + 1

L − 1

V ∗

c − V ∗

b

V ∗

c + V ∗

b

δR

2
+ Rrgb +

δR

2
(23)



A. First Discriminator

The first method uses only the real component’s ofV ∗

b and
V ∗

c in equation (23). The result is equation (24).

Rtarget =
L + 1

L − 1

Ac[Vc + δx,c] − Ab[Vb + δx,b]

Ac[Vc + δx,c] + Ab[Vb + δx,b]

δR

2

+Rrgb +
δR

2
(24)

To derive the variance ofRtarget in (24), the division in
(24) is approximated with a first order Taylor Series expanded
around the error terms, (25).

Ac[Vc + δx,c] − Ab[Vb + δx,b]

Ac[Vc + δx,c] + Ab[Vb + δx,b]
= f(δx,c, δx,b) (25)

where

f(δx,c, δx,b) ≈ f(0, 0) + δx,c

∂f(δx,c, δx,b)

δx,c

∣

∣

∣

∣

∣

δx,b=0,δx,c=0

+ δx,b

∂f(δx,c, δx,b)

δx,b

∣

∣

∣

∣

∣

δx,b=0,δx,c=0

Carrying out the differentiation in (25) results in (26).

f(δx,c, δx,b) ≈
AcVc − AbVb

AcVc + AbVb

(26)

+δx,c

2AcAbVb

(AcVc + AbVb)2
− δx,b

2AcAbVc

(AcVc + AbVb)2

Equation (27) shows the division in (24) replaced with the
first order Taylor series.

Rtarget =
L + 1

L − 1

{

AcVc − AbVb

AcVc + AbVb

+ δx,c

2AcAbVb

(AcVc + AbVb)2

−δx,b

2AcAbVc

(AcVc + AbVb)2

}

δR

2
+ Rrgb +

δR

2
(27)

The variance of the error in the range measurements is
defined in (28). In (28),Rtarget is the mean value of equation
(27). Substituting equation (27) into (28) produces (29). The
expected values ofδ2

x,c and δ2

x,b and the expected value of
δx,cδx,b must be computed to use equation (29).

σ2

target = E[(Rtarget − Rtarget)
2] (28)

σ2

target =

(

L + 1

L − 1

)2(

δR

2

)2

E

[

δ2

x,c

4A2

cA
2

bV
2

b

(AcVc + AbVb)4
(29)

+δ2

x,b

4A2

cA
2

bV
2

c

(AcVc + AbVb)4
− δx,cδx,b

8A2

cA
2

bVcVb

(AcVc + AbVb)4

]

The definition δx,c is used to derive its expected value
squared, (30). The product of the two integrals in (30) can
be rearranged into a double integral, (31). The integrals in
(31) are carried out with respect tot1 and t2.

E[δ2

x,c] = E

[(

1

T

∫ T

0

x(t)G(t − τc)dt

)

(

1

T

∫ T

0

x(t)G(t − τc)dt

)]

(30)

∫ T

0

x(t)G(t − τc)dt

∫ T

0

x(t)G(t − τc)dt =

∫ T

0

∫ T

0

x(t1)x(t2)G(t1 − τc)G(t2 − τc)dt1dt2 (31)

The expectation operator and integration are linear func-
tions. The expectation operator can therefore be moved inside
the double integral. The noisex(t) and maximal length code
are uncorrelated so their expected values can be computed sep-
arately, (32). The expected value of the product of a sequence
and a copy of itself at a different time is the autocorrelation
of the sequence. Equation (33) shows the expectations in (32)
replaced with the noise and code autocorrelation functions.
The noisex(t) is assumed to sufficiently high in bandwidth
that its autocorrelation function can be modeled as a delta
function.

E[δ2

x,c] =
1

T 2

[

∫ T

t1=0

∫ T

t2=0

E[x(t1)x(t2)]

E[G(t1 − τc)G(t2 − τc)]dt1dt2

]

(32)

E[δ2

x,c] =
1

T 2

∫ T

t1=0

∫ T

t2=0

σ2

xδ(t1− t2)R(t1− t2)dt1dt2 (33)

The delta function inside (33) is zero whenevert1 and t2
are not equal. Whent1 and t2 are equalR(0) is one and the
inner integral is equal toσ2

x, (34). The expected value ofδx,c

is therefore displayed in (35). The expected value ofδx,b is
similarly derived and shown in (36).

E[δ2

x,c] =
1

T 2

∫ T

t1=0

σ2

xdt1 (34)

E[δ2

x,c] =
σ2

x

T
(35)

E[δ2

x,b] =
σ2

x

T
(36)

The expected value of the quantityδx,cδx,b can be derived in
a manner similar to that shown forE[δ2

x,c], (37). In Equation
(37), the inside integral evaluates toR(τc−τb) whent1 andt2
are equal and zero otherwise. The expected value ofδx,cδx,b

is therefore shown in (38).

E[δx,cδx,b] =
1

T 2

∫ T

t1=0

∫ T

t2=0

σ2

xδ(t1 − t2)·

R(t1 − t2 + τc − τb)dt1dt2 (37)

E[δx,cδx,b] =
σ2

xR(τc − τb)

T
(38)

Equation (39) shows the expectations in equation (29)
replaced with their actual values.

σ2

target =

(

L + 1

L − 1

)2(

δR

2

)2
[

4A2

cA
2

bV
2

b

(AcVc + AbVb)4
+ (39)

4A2

cA
2

bV
2

c

(AcVc + AbVb)4
− 8R(τc − τb)A

2

cA
2

bVcVb

(AcVc + AbVb)4

]

(

σ2

x

T

)



The variance of the range errors can be related to signal
to noise ratio by remembering the definition of the voltages
Va, Vb, andVc,(40). Each term contains the amplitude of the
received signal after passing through the receiver’s front-end.
SNR is defined in equation (41) for a sinusoid as the ratio
of the signal power to the noise power,Pn. For narrowband
noise, the noise power is equal to the variance ofx(t) and
to the variance ofy(t), [8]. The SNR level at the input to
the mixer can therefore be expressed as the ratio of the signal
power, 1

2
A2, to the noise power,σ2

x or σ2

y.

Va = ArR(τa − τ) = ArRa

Vb = ArR(τb − τ) = ArRb (40)

Vc = ArR(τc − τ) = ArRc

SNR =
1

2
A2

Pn

Pn = σ2

x = σ2

y (41)

SNR =
1

2
A2

σ2
x

=
1

2
A2

σ2
y

Replacing the termsVb andVc in (39) with their definitions
in (40) and rearranging yields equation (42). The definition
of SNR can now be used to express the variance of the
range errors as a function of SNR, channel mismatch, and
position within the split-gate region, (43). Equation (43)can
be arranged into the form of equation (44).

σ2

target =

(

L + 1

L − 1

)2(

δR

2

)2
[

4A2

cA
2

bR
2

b

(AcRc + AbRb)4
+ (42)

4A2

cA
2

bR
2

c

(AcRc + RbRb)4
− 8R(τc − τb)A

2

cA
2

bRcRb

(AcRc + AbRb)4

]

σ2

x

A2
rT

B. Second Discriminator

The second discriminator function is shown in (45). Here,
all the operations inside the brackets are performed and then
only the real component of the division is considered. The
same Taylor series expansion approach is used to analyze the
discriminator function. The only difference is that all four error
terms are included, (46).

Rtarget =
L + 1

L − 1
Re

{

V ∗

c − V ∗

b

V ∗

c + V ∗

b

}

δR

2
+ Rrgb +

δR

2
(45)

Ac[Vc + δx,c + jδy,c] − Ab[Vb + δx,b + jδy,b]

Ac[Vc + δx,c + jδy,c] + Ab[Vb + δx,b + jδy,b]

= f(δx,c, δy,c, δx,b, δy,b) (46)

Equation (47) shows the first three terms of the Taylor series
expansion. The partial with respect toδy,c results in an imag-
inary number. Since only the real component is considered,
the contribution ofδy,c to the series can be ignored. Likewise,
the partial with respect toδy,b can also be ignored. With the
terms contributed byδy,b andδy,c gone, the first order Taylor

Series approximation of the second discriminator is identical
to that of the first discriminator.

f(δx,c, δy,c, δx,b, δy,b) =
AcVc − AbVb

AcVc + AbVb

+ δx,c

2AcAbVb

(AcVc + AbVb)2

−δy,c

j2AcAbVb

(AcVc + AbVb)2
+ ... (47)

The variance of the range errors for the second discriminator
can therefore be expressed with the same equation derived for
the first discriminator. Theoretically, the discriminators should
have the same performance.

C. Third Discriminator

Equation (48) shows the third discriminator function. It
takes the absolute values ofV ∗

b and V ∗

c and then performs
the math operations of the discriminator. The absolute value
operation does not lend itself to mathematical manipulation in
this case. The third discriminators performance is evaluated
empirically by simulation.

Rtarget =
L + 1

L − 1

|V ∗

c | − |V ∗

b |
|V ∗

c | + |V ∗

b |
δR

2
+ Rrgb +

δR

2
(48)

V. SIMULATION RESULTS AND VALIDATION

In order to both validate the analytical derivations of the
first and second discriminators and study the absolute value
discriminator, a simulation of the radar system was performed
in MATLAB. Nine equally spaced points where chosen be-
tweenRrgc andRrgb as shown in Figure 4. At each discrete
point,the variance of the range error was computed by Monte
Carlo simulation. Values ofσtarget were first calculated for
different signal to noise ratios. Then, a least-squares curve fit
of the data was performed. The data was fitted to the function
in equation (49). The value ofk which gave the least-mean-
squared error between the curve fit and the simulation results
was determined.

σtarget = k
δR√
SNR

(49)

Fig. 4. Discrete Positions Within Split-Gate Region

Figure 5 shows the results of the simulation for the first
discriminator for the discrete position labeled number five



σ2

target =

(

L + 1

L − 1

)2
[

1

T

A2

cA
2

bR
2

b

(AcRc + AbRb)4
+

1

T

A2

cA
2

bR
2

c

(AcRc + RbRb)4
− R(τc − τb)

T

2A2

cA
2

bRcRb

(AcRc + AbRb)4

]

(δR)2

2SNR
(43)

σtarget = k
δR√
SNR

(44)

where

k =

√

A2
cA

2

b

2T (AcRc + RbRb)4

(

L + 1

L − 1

)2

[R2

b + R2
c − 2R(τc − τb)RbRc]

in figure 4 and no channel mismatch. The value ofσtarget

determined from the Monte Carlo simulation matches closely
with the value derived earlier. The curve determined from the
least-squares fit is also shown and accurately models the shape
of the data. Figure 6 shows the results of the same simulation
for the discrete position at the edge of the split-gate region,
labeled number nine in figure 4. Again, the simulation results
and analytical values match closely.
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Fig. 5. Simulation results at the middle of the split-gate region with no
channel mismatch for the first discriminator.
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Fig. 6. Simulation results at the edge of the split-gate region for the first
discriminator with no channel mismatch.

Figure 7 shows the predicted value ofk and values
determined from the least-squares fit of two different Monte
Carlo simulations. The difference in the simulations is the
initial seed in MATLAB’s random number generator. The
predicted and empirical values ofk slightly diverge on the
left side in the top graph. The opposite behavior is seen in
the bottom graph. This behavior is attributed to the fact that
the noise MATLAB generates is not truly random but based
on the CPU state. Figure 8 shows how the value ofk varies
when the channels in the receiver are not match. For figure 8,
Ab = .8 andAc = 1.
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Fig. 7. Predicted and Monte Carlo Values ofk for the first discriminator
with no channel mismatch.

Figure 9 shows the results of the Monte Carlo simulation
for the second discriminator (45). The second discriminator
produces the same values ofσtarget as the first discriminator,
as predicted.

Figure 10 shows the results of the Monte Carlo simulation
for the third discriminator (48) with no channel mismatch.
Figure 11 shows its performance withAb = .8 andAc = 1.
Its performance is equivalent to the performance of the first
two discriminators.

VI. CONCLUSION

In this paper the authors present three new contributions.
First, we show that the variance of the range errors for a
phase coded CW radar is a function of position in the split-
gate region. Second, analytical equations are derived that
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Fig. 8. Predicted and Monte Carlo values ofk for the first discriminator
with channel mismatch,Ab = .8 andAc = 1.
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Fig. 9. Predicted and Monte Carlo values ofk for the second discriminator
with no channel mismatch.
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Fig. 10. Monte Carlo values ofk for the third discriminator with the predicted
values of k for the first discriminator. There is no channel mismatch.
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Fig. 11. Monte Carlo values ofk for the third discriminator with the predicted
values of k for the first discriminator. The channel mismatch is.2, Ab = .8

andAc = 1.

accurately relate the variance of the range errors to SNR and
channel mismatch. The third contribution is a comparison of
three different discriminator functions. All three discriminators
are shown to produce similar results.These contributions are
significant because they allow the range errors encountered
in split-gate tracking to be better modeled. Correct modeling
of the range errors is important because it accelerates the
convergence of the track filter.

Future work in the area would include comparing the results
in the paper to actual data. By using real data, the results
shown in this paper could be validated. Using real data would
allow the performance of the track filter to be investigated.
How fast the track filter converges when using our results can
be compared to how fast it converges when it assumes the
variance of the range error is constant through the split-gate
region.
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